Ergodic, primal convergence in dual subgradient schemes for convex programming
نویسندگان
چکیده
Lagrangean dualization and subgradient optimization techniques are frequently used within the field of computational optimization for finding approximate solutions to large, structured optimization problems. The dual subgradient scheme does not automatically produce primal feasible solutions; there is an abundance of techniques for computing such solutions (via penalty functions, tangential approximation schemes, or the solution of auxiliary primal programs), all of which require a fair amount of computational effort. We consider a subgradient optimization scheme applied to a Lagrangean dual formulation of a convex program, and construct, at minor cost, an ergodic sequence of subproblem solutions which converges to the primal solution set. Numerical experiments performed on a traffic equilibrium assignment problem under road pricing show that the computation of the ergodic sequence results in a considerable improvement in the quality of the primal solutions obtained, compared to those generated in the basic subgradient scheme.
منابع مشابه
Ergodic, primal convergence in dual subgradient schemes for convex programming, II: the case of inconsistent primal problems
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? ...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کامل2753 1 Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods ∗
We study primal solutions obtained as a by-product of subgradient methods when solving the Lagrangian dual of a primal convex constrained optimization problem (possibly nonsmooth). The existing literature on the use of subgradient methods for generating primal optimal solutions is limited to the methods producing such solutions only asymptotically (i.e., in the limit as the number of subgradien...
متن کاملSubgradient Methods for Saddle-Point Problems
We consider computing the saddle points of a convex-concave function using subgradient methods. The existing literature on finding saddle points has mainly focused on establishing convergence properties of the generated iterates under some restrictive assumptions. In this paper, we propose a subgradient algorithm for generating approximate saddle points and provide per-iteration convergence rat...
متن کاملRecovery of Primal Solution in Dual Subgradient Schemes
In this thesis, we study primal solutions for general optimization problems. In particular, we employ the subgradient method to solve the Lagrangian dual of a convex constrained problem, and use a primal-averaging scheme to obtain near-optimal and near-feasible primal solutions. We numerically evaluate the performance of the scheme in the framework of Network Utility Maximization (NUM), which h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 86 شماره
صفحات -
تاریخ انتشار 1999